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Introduction

• Steps of Bayesian computation
• posterior p(θ|y)
• predictive p(ỹ |y)

• Complicated or unusual models or in high dimensions need
more elaborate algorithms

• Ch10 gives a brief summary of procedures to approximately
evaluate integrals
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Normalized and unnormalized densities

• target distribution p(θ|y)
• We call a easily computable funtion q(θ|y) unnormalized

density, if q(θ|y)
p(θ|y) is a constant only depends on y

• ex) in usual bayes rule, q(θ|y) can be p(θ)p(θ|y)
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Log densities

• We can use log densities to avoid overflow or underflow when
possible
• We can also take exponentiation only when necessary

• It should be taken as late as possible
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Numerical integration

• Numerical integration = Quadrature
• Methods in which integral over continous functions is

evaluated by computing the value of function at finite number
of points
• Deterministic methods

• Trapezoidal rule
• Simpson’s rule

• Simulation methods
• Monte Carlo methods

• Method with more points gives more accurate approximation

8



Posterior expectation of h(θ)

• Posterior expectation of any function h(θ) is give as

E (h(θ)|y) =
∫

h(θ)p(θ|y)dθ

• Conversely, we can express any integral over the space of θ as
E (h(θ)|y) by defining proper h(θ)

• for θs from p(θ|y), take

E (h(θ)|y) ' 1
S

S∑
s=1

h(θs)

(in Ch 10.5)

• Hard to draw from the posterior/h(θs) varies too much ->
needs other sampling methods

9



Simulation methods

• E (h(θ)|y) ' 1
S

∑S
s=1 h(θ

s)

• More accuracy when more samples

• Basic Monte Carlo methods (MC) <- independent samples
(Ch 10.3-4)

• Markov Chain Monte Carlo methods (MCMC) <- dependent
samples (Ch 11-12)

• Combining general ideas could give more efficient computation
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Deterministic methods

• Basic version

E (h(θ)|y) =
∫

h(θ)p(θ|y)dθ ∼ 1
S

S∑
s=1

wsh(θ
s)p(θs |y)

• More elaborate rules use local polynomials, which gives more
accuracy

• (typically) Gives lower variance than simulation methods, but
hard to choose point locations
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Distributional approximations

• Distributional approximations approximates the posterior with
some simpler parameteric distribution

• ex) Normal approximation(Ch 4), Advanced approximation(Ch
13)
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Crude estimation by ignoring some information

• Rough estimation of the location of the target distribution is
recommended before starting the approximation
• Ex1) Hierarchical model

• Roughly estimate the main parameters γ
• First estimating the hyperparameters φ, then use the

conditional posterior distribution p(γ|φ, y)
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Crude estimation by ignoring some information

• Ex2) Educational testing analysis (Ch 5.5)
• The school effects θj can be crudely estimated by the data yj

• When some data are missing, it is good to simplistically
imputing the missing values based on available data

• Crude inferences are useful for comparison with later results

• If the rough estimate differs greatly from the results of the full
analysis, the latter may well have errors
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Direct simulation and rejection sampling

• For simple non-hierarchical models, it is easy to draw from the
posterior directly especially if conjugate prior has assumed

• If the model is more complicated, we have to simulate by parts

• Basic samplings are introduced in Appendix A
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Simulating from predictive distributions

• Once we have a sample from the posterior p(θ|y), it is
typically easy to draw from the predictive distribution

• For each draw of θ, just draw one ỹ from the predictive p(ỹ |θ)
• Set of ỹ ’s characterizes the posterior predictive distribution
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Rejection sampling

• Rejection sampling can be used when we want to draw a single
random value from p(θ|y) or q(θ|y)
• First, we have to define g(θ) for all θ for which p(θ|y) > 0

with following properties
• g(θ) has a finite integral
• p(θ|y)

g(θ) ≤ M for all θ, known constant M
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Rejection sampling - Algorithm

1 Sample θ at random from the probability density proportional
to g(θ)

2 With probability p(θ|y)
Mg(θ) , accept θ as a draw from p.

If the drawn θ is rejected, return to step 1

Figure 1: Rejection sampling
Top curve: Mg(θ), bottom curve: p(θ|y)
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Rejection sampling

• Ideal situation is that g(θ) ∝ p(θ|y) and have suitable M,
which makes rejection not be occured

• If g(θ) is nearly proportional to p(θ|y), the bound M must be
set so large that almost all draws will be rejected

• Self-monitoring: if the method is not working efficiently, few
simulated draws will be accepted

• Usage) some fast methods for sampling from standard
univariate distributions, generic truncated multivariate
distributions
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Importance sampling

• Importance sampling is a method related to rejection sampling
and a precursor to the Metropolis algorithm (Ch 11)

• Let g(θ) be a approximated distribution to the target that we
can generate random draw from
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Importance sampling

• Suppose we are interested in E (h(θ)|y), express it as

E (h(θ)|y) =
∫
h(θ)q(θ|y)dθ∫
q(θ|y)dθ

=

∫
[h(θ)q(θ|y)/g(θ)]g(θ)dθ∫
[q(θ|y)/g(θ)]g(θ)dθ

• This can be estimated using S draws θ1, ..., θS from g(θ) as

1
S

∑S
s=1 h(θ

s)w(θs)
1
S

∑S
s=1 w(θs)

where w(θs) = q(θs |y)
g(θs) (importance ratios / importance

weights)
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Importance sampling

• If g(θ) can be chosen s.t. hq
g is roughly constant, then fairly

precise estimates can be obtained

• If the importance ratios vary substantially, then the sampling is
not useful

• The worst scenario occurs when the importance ratios are
small with high probability, and are huge with low probability

• It happens when hq has wide tails compared to g as a function
of θ
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Accuracy and efficiency of importance sampling estimates

• Large importance ratios have more influence to the
approximation than the small ones

• If the variance of the weights are finite, the effective sample
size can be estimated as follows

Seff =
1∑S

s=1(w̃(θs))2

where w̃(θs) = w(θs)S∑S
s′=1 w(θs′ )

are normalized weights

• Few huge weights -> small Seff , occasional huge weights ->
estimate is not good
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Importance resampling (SIR)

• Importance resampling is used to obtain independent samples
with equal weights

• Once θ1, ..., θS draws from the approximate distribution g have
been sampled, a sample of k draws can be simulated as follows

1 Sample a value θ from the set θ1, ..., θS , where the probability
of sampling each θs is proportional to the weight w(θs)

2 Sample a next k values as same, but excluding the already
sampled ones
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Importance resampling

• Reason for exclusion
• If weights are moderate, then inclusion/exclusion doesn’t

matter
• If few weights are huge, then few values can be sampled

repeatedly if exclusion has not implemented
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Uses of importance sampling in Bayesian computation

1 It can be used to improve analytic posterior approximation (Ch
13)
• If importance sampling doesn’t yield an accurate

approximation, then SIR can be helpful to obtain starting
points for an iterative simulation of posterior distribution

2 It is useful when considering mild changes in the posterior
distribution
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How many simulation draws are needed?

• Bayesian inferences are usually most conveniently summarized
by random draws from the posterior distributions

1 Percentiles of the posterior distribution of univariate estimand
• Reporting the 2.5%, 25%, 50%, 75%, 97.5% points of the

sampled distribution provides a 50%, 95% posterior interval

2 Make inferences about predictive quantities
• Given each θs , we can sample predictive ỹ s ∼ p(ỹ |θs)

3 Given each simulation θs , we can simulate a replicated dataset
y rep s to check the model by comparing the data to these
posterior predictive replications
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How many simulation draws are needed?

• Our goal in Bayesian computation is obtaining a set of
independent draws θs from the posterior distribution, with
enough draws S
• In general,

• posterior median, probability near 0.5, low-dimensional
summaries need less simulations

• posterior means, probability of rare events, high-dimensional
summaries need more simulations
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The bugs family of programs

• Bayesian inference using Gibbs sampling -> bugs

• A combination of Gibbs sampling, Metropolis algorithm, and
slice sampling can provide inference for variety of models when
run for a sufficiently long time

34



Other environments

• Stan : uses Hamiltonian Monte Carlo mehtod (Ch 12.4)

• mcsim : C program that implements Gibbs and Metropolis for
differential equation systems

• PyMC : a suite of routines in Python

• HBC : for discrete-parameter models
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Debugging using fake data

• Use when a model is particularly complicated, or its inferences
are unexpected enough to be not necessarily believable

1 Pick a reasonable value for the true parameter vector θ, which
shouold be a random draw from the prior distribution

2 If the model is hierarchical, then perform Step1 for
hyperparameters, then draw the others from the prior
distribution conditional on the specified hyperparameters

3 Simulate a large fake dataset y fake from the data distribution
p(y |θ)

4 Perform posterior inference about θ from p(θ|y fake)

5 Compare the posterior inferences to the true θ
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Debugging using fake data

• To check that inferences are correct on average, a residual plot
is helpful

• For each scalar θj , define predicted value as the average of the
posterior simulations of θj , and the error as the true θj minus
the predicted value

• If correct, the errors would approximately have zero mean

• If a model has only few parameters, one can get the same
effect by performing many fake-data simulations
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Model checking and convergence checking as debugging

• In practice, when a model grossly misfits the data, it is often
because of a computing error

• Similarly, poor convergence of anm iterative simulation
algorithm can sometimes occur from programming errors
• A useful strategy is simplifying

• remove parameters / fix parameter values
• use highly informative prior
• unlink hierarchy
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