Ch10. Introduction to Bayesian computation

Jihu Lee

October 13, 2020

Seoul National University

- 1 Introduction
- 2 Numerical integration
- 3 Distributional approximations
- 4 Direct simulation and rejection sampling
- **6** Importance sampling
- 6 How many simulation draws are needed?
- Computing environments
- 8 Debugging Bayesian computing

- 1 Introduction
- 2 Numerical integration
- 3 Distributional approximations
- 4 Direct simulation and rejection sampling
- 6 Importance sampling
- 6 How many simulation draws are needed?
- Computing environments
- 8 Debugging Bayesian computing

Introduction

- Steps of Bayesian computation
 - posterior $p(\theta|y)$
 - predictive $p(\tilde{y}|y)$
- Complicated or unusual models or in high dimensions need more elaborate algorithms
- Ch10 gives a brief summary of procedures to approximately evaluate integrals

Normalized and unnormalized densities

- target distribution $p(\theta|y)$
- We call a easily computable funtion $q(\theta|y)$ unnormalized density, if $\frac{q(\theta|y)}{p(\theta|y)}$ is a constant only depends on y
- ex) in usual bayes rule, $q(\theta|y)$ can be $p(\theta)p(\theta|y)$

Log densities

- We can use log densities to avoid overflow or underflow when possible
- We can also take exponentiation only when necessary
 - It should be taken as late as possible

- 1 Introduction
- 2 Numerical integration
- 3 Distributional approximations
- 4 Direct simulation and rejection sampling
- 6 Importance sampling
- 6 How many simulation draws are needed?
- Computing environments
- 8 Debugging Bayesian computing

Numerical integration

- Numerical integration = Quadrature
- Methods in which integral over continous functions is evaluated by computing the value of function at finite number of points
 - Deterministic methods
 - Trapezoidal rule
 - Simpson's rule
 - Simulation methods
 - Monte Carlo methods
- Method with more points gives more accurate approximation

Posterior expectation of $h(\theta)$

• Posterior expectation of any function $h(\theta)$ is give as

$$E(h(\theta)|y) = \int h(\theta)p(\theta|y)d\theta$$

- Conversely, we can express any integral over the space of θ as $E(h(\theta)|y)$ by defining proper $h(\theta)$
- for θ^s from $p(\theta|y)$, take

$$E(h(\theta)|y) \simeq \frac{1}{S} \sum_{s=1}^{S} h(\theta^s)$$

(in Ch 10.5)

• Hard to draw from the posterior/ $h(\theta^s)$ varies too much -> needs other sampling methods

Simulation methods

- $E(h(\theta)|y) \simeq \frac{1}{S} \sum_{s=1}^{S} h(\theta^s)$
- More accuracy when more samples
- Basic Monte Carlo methods (MC) <- independent samples (Ch 10.3-4)
- Markov Chain Monte Carlo methods (MCMC) <- dependent samples (Ch 11-12)
- Combining general ideas could give more efficient computation

Deterministic methods

Basic version

$$E(h(\theta)|y) = \int h(\theta)p(\theta|y)d\theta \sim \frac{1}{S} \sum_{s=1}^{S} w_s h(\theta^s)p(\theta^s|y)$$

- More elaborate rules use local polynomials, which gives more accuracy
- (typically) Gives lower variance than simulation methods, but hard to choose point locations

- 1 Introduction
- 2 Numerical integration
- 3 Distributional approximations
- 4 Direct simulation and rejection sampling
- 6 Importance sampling
- 6 How many simulation draws are needed?
- Computing environments
- 8 Debugging Bayesian computing

Distributional approximations

- Distributional approximations approximates the posterior with some simpler parameteric distribution
- ex) Normal approximation(Ch 4), Advanced approximation(Ch 13)

Crude estimation by ignoring some information

- Rough estimation of the location of the target distribution is recommended before starting the approximation
- Ex1) Hierarchical model
 - ullet Roughly estimate the main parameters γ
 - First estimating the hyperparameters ϕ , then use the conditional posterior distribution $p(\gamma|\phi,y)$

Crude estimation by ignoring some information

- Ex2) Educational testing analysis (Ch 5.5)
 - ullet The school effects $heta_j$ can be crudely estimated by the data y_j
- When some data are missing, it is good to simplistically imputing the missing values based on available data
- Crude inferences are useful for comparison with later results
- If the rough estimate differs greatly from the results of the full analysis, the latter may well have errors

- 1 Introduction
- 2 Numerical integration
- 3 Distributional approximations
- 4 Direct simulation and rejection sampling
- 6 Importance sampling
- 6 How many simulation draws are needed?
- Computing environments
- 8 Debugging Bayesian computing

Direct simulation and rejection sampling

- For simple non-hierarchical models, it is easy to draw from the posterior directly especially if conjugate prior has assumed
- If the model is more complicated, we have to simulate by parts
- Basic samplings are introduced in Appendix A

Simulating from predictive distributions

- Once we have a sample from the posterior $p(\theta|y)$, it is typically easy to draw from the predictive distribution
- For each draw of θ , just draw one \tilde{y} from the predictive $p(\tilde{y}|\theta)$
- Set of \tilde{y} 's characterizes the posterior predictive distribution

Rejection sampling

- Rejection sampling can be used when we want to draw a single random value from $p(\theta|y)$ or $q(\theta|y)$
- First, we have to define $g(\theta)$ for all θ for which $p(\theta|y) > 0$ with following properties
 - $g(\theta)$ has a finite integral
 - $\frac{p(\theta|y)}{g(\theta)} \le M$ for all θ , known constant M

Rejection sampling - Algorithm

- **1** Sample θ at random from the probability density proportional to $g(\theta)$
- **2** With probability $\frac{p(\theta|y)}{Mg(\theta)}$, accept θ as a draw from p. If the drawn θ is rejected, return to step 1

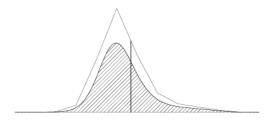


Figure 1: Rejection sampling Top curve: $Mg(\theta)$, bottom curve: $p(\theta|y)$

Rejection sampling

- Ideal situation is that $g(\theta) \propto p(\theta|y)$ and have suitable M, which makes rejection not be occured
- If $g(\theta)$ is nearly proportional to $p(\theta|y)$, the bound M must be set so large that almost all draws will be rejected
- Self-monitoring: if the method is not working efficiently, few simulated draws will be accepted
- Usage) some fast methods for sampling from standard univariate distributions, generic truncated multivariate distributions

- 1 Introduction
- 2 Numerical integration
- 3 Distributional approximations
- 4 Direct simulation and rejection sampling
- **6** Importance sampling
- 6 How many simulation draws are needed?
- Computing environments
- 8 Debugging Bayesian computing

Importance sampling

- Importance sampling is a method related to rejection sampling and a precursor to the Metropolis algorithm (Ch 11)
- Let $g(\theta)$ be a approximated distribution to the target that we can generate random draw from

Importance sampling

• Suppose we are interested in $E(h(\theta)|y)$, express it as

$$E(h(\theta)|y) = \frac{\int h(\theta)q(\theta|y)d\theta}{\int q(\theta|y)d\theta} = \frac{\int [h(\theta)q(\theta|y)/g(\theta)]g(\theta)d\theta}{\int [q(\theta|y)/g(\theta)]g(\theta)d\theta}$$

ullet This can be estimated using S draws $\theta^1,...,\theta^S$ from $g(\theta)$ as

$$\frac{\frac{1}{S} \sum_{s=1}^{S} h(\theta^s) w(\theta^s)}{\frac{1}{S} \sum_{s=1}^{S} w(\theta^s)}$$

where $w(\theta^s) = \frac{q(\theta^s|y)}{g(\theta^s)}$ (importance ratios / importance weights)

Importance sampling

- If $g(\theta)$ can be chosen s.t. $\frac{hq}{g}$ is roughly constant, then fairly precise estimates can be obtained
- If the importance ratios vary substantially, then the sampling is not useful
- The worst scenario occurs when the importance ratios are small with high probability, and are huge with low probability
- It happens when hq has wide tails compared to g as a function of θ

Accuracy and efficiency of importance sampling estimates

- Large importance ratios have more influence to the approximation than the small ones
- If the variance of the weights are finite, the effective sample size can be estimated as follows

$$S_{eff} = rac{1}{\sum_{s=1}^{S} (\tilde{w}(heta^s))^2}$$

where $\tilde{w}(\theta^s) = \frac{w(\theta^s)S}{\sum_{s'=1}^S w(\theta^{s'})}$ are normalized weights

 Few huge weights -> small S_{eff}, occasional huge weights -> estimate is not good

Importance resampling (SIR)

- Importance resampling is used to obtain independent samples with equal weights
- Once $\theta^1, ..., \theta^S$ draws from the approximate distribution g have been sampled, a sample of k draws can be simulated as follows
- **1** Sample a value θ from the set $\theta^1, ..., \theta^S$, where the probability of sampling each θ^s is proportional to the weight $w(\theta^s)$

Importance resampling

- Reason for exclusion
 - If weights are moderate, then inclusion/exclusion doesn't matter
 - If few weights are huge, then few values can be sampled repeatedly if exclusion has not implemented

Uses of importance sampling in Bayesian computation

- It can be used to improve analytic posterior approximation (Ch 13)
 - If importance sampling doesn't yield an accurate approximation, then SIR can be helpful to obtain starting points for an iterative simulation of posterior distribution
- 2 It is useful when considering mild changes in the posterior distribution

- 1 Introduction
- 2 Numerical integration
- 3 Distributional approximations
- 4 Direct simulation and rejection sampling
- 6 Importance sampling
- 6 How many simulation draws are needed?
- Computing environments
- 8 Debugging Bayesian computing

How many simulation draws are needed?

- Bayesian inferences are usually most conveniently summarized by random draws from the posterior distributions
- Percentiles of the posterior distribution of univariate estimand
 - Reporting the 2.5%, 25%, 50%, 75%, 97.5% points of the sampled distribution provides a 50%, 95% posterior interval
- Make inferences about predictive quantities
 - Given each θ^s , we can sample predictive $\tilde{y}^s \sim p(\tilde{y}|\theta^s)$
- **3** Given each simulation θ^s , we can simulate a replicated dataset $y^{rep\ s}$ to check the model by comparing the data to these posterior predictive replications

How many simulation draws are needed?

- Our goal in Bayesian computation is obtaining a set of independent draws θ^s from the posterior distribution, with enough draws S
- In general,
 - posterior median, probability near 0.5, low-dimensional summaries need less simulations
 - posterior means, probability of rare events, high-dimensional summaries need more simulations

- 1 Introduction
- 2 Numerical integration
- 3 Distributional approximations
- 4 Direct simulation and rejection sampling
- 6 Importance sampling
- 6 How many simulation draws are needed?
- **7** Computing environments
- 8 Debugging Bayesian computing

The bugs family of programs

- Bayesian inference using Gibbs sampling -> bugs
- A combination of Gibbs sampling, Metropolis algorithm, and slice sampling can provide inference for variety of models when run for a sufficiently long time

Other environments

- Stan: uses Hamiltonian Monte Carlo mehtod (Ch 12.4)
- mcsim : C program that implements Gibbs and Metropolis for differential equation systems
- PyMC : a suite of routines in Python
- HBC : for discrete-parameter models

- 1 Introduction
- 2 Numerical integration
- 3 Distributional approximations
- 4 Direct simulation and rejection sampling
- 6 Importance sampling
- 6 How many simulation draws are needed?
- Computing environments
- 8 Debugging Bayesian computing

Debugging using fake data

- Use when a model is particularly complicated, or its inferences are unexpected enough to be not necessarily believable
- lacktriangle Pick a reasonable value for the true parameter vector θ , which should be a random draw from the prior distribution
- If the model is hierarchical, then perform Step1 for hyperparameters, then draw the others from the prior distribution conditional on the specified hyperparameters
- § Simulate a large fake dataset y^{fake} from the data distribution $p(y|\theta)$
- **4** Perform posterior inference about θ from $p(\theta|y^{fake})$
- **6** Compare the posterior inferences to the true θ

Debugging using fake data

- To check that inferences are correct on average, a residual plot is helpful
- For each scalar θ_j , define predicted value as the average of the posterior simulations of θ_j , and the error as the true θ_j minus the predicted value
- If correct, the errors would approximately have zero mean
- If a model has only few parameters, one can get the same effect by performing many fake-data simulations

Model checking and convergence checking as debugging

- In practice, when a model grossly misfits the data, it is often because of a computing error
- Similarly, poor convergence of anm iterative simulation algorithm can sometimes occur from programming errors
- A useful strategy is simplifying
 - remove parameters / fix parameter values
 - use highly informative prior
 - unlink hierarchy