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Introduction

® Steps of Bayesian computation
® posterior p(f|y)
® predictive p(¥|y)
® Complicated or unusual models or in high dimensions need

more elaborate algorithms

® Ch10 gives a brief summary of procedures to approximately
evaluate integrals



Normalized and unnormalized densities

® target distribution p(f|y)

® We call a easily computable funtion q(f]y) unnormalized

vy e a(0ly)
density, if o(3ly) 'S @ constant only depends on y

® ex) in usual bayes rule, g(f]y) can be p(0)p(f|y)



e \We can use log densities to avoid overflow or underflow when
possible
e \We can also take exponentiation only when necessary

® |t should be taken as late as possible
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Numerical integration

® Numerical integration = Quadrature
® Methods in which integral over continous functions is
evaluated by computing the value of function at finite number
of points
® Deterministic methods

® Trapezoidal rule
® Simpson's rule

® Simulation methods

® Monte Carlo methods

® Method with more points gives more accurate approximation



Posterior expectation of h(f)

® Posterior expectation of any function h(0) is give as

E(O)) = [ Ho)p(0ly)ds

e Conversely, we can express any integral over the space of 6 as
E(h(0)|y) by defining proper h(6)
e for 6° from p(f|y), take

S
E(h(O)ly) ~ < > h(#")
s=1

(in Ch 10.5)

® Hard to draw from the posterior/h(6°) varies too much ->
needs other sampling methods



Simulation methods

S
o E(h(0)ly) =~ ¢ >o_; h(6°)
® More accuracy when more samples

® Basic Monte Carlo methods (MC) <- independent samples
(Ch 10.3-4)

® Markov Chain Monte Carlo methods (MCMC) <- dependent
samples (Ch 11-12)

e Combining general ideas could give more efficient computation
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Deterministic methods

® Basic version
1 S
E(HO)ly) = [ HO)p(8ly)d6 ~ < > weh(8*)p(6*ly)
s=1

® More elaborate rules use local polynomials, which gives more
accuracy

® (typically) Gives lower variance than simulation methods, but
hard to choose point locations

11



Table of Contents

© Distributional approximations

12



Distributional approximations

e Distributional approximations approximates the posterior with

some simpler parameteric distribution

® ex) Normal approximation(Ch 4), Advanced approximation(Ch
13)
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Crude estimation by ignoring some information

® Rough estimation of the location of the target distribution is
recommended before starting the approximation
® Ex1) Hierarchical model

® Roughly estimate the main parameters ~
® First estimating the hyperparameters ¢, then use the
conditional posterior distribution p(7|®, y)
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Crude estimation by ignoring some information

Ex2) Educational testing analysis (Ch 5.5)
® The school effects ; can be crudely estimated by the data y;

When some data are missing, it is good to simplistically
imputing the missing values based on available data

Crude inferences are useful for comparison with later results

If the rough estimate differs greatly from the results of the full
analysis, the latter may well have errors

15
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Direct simulation and rejection sampling

® For simple non-hierarchical models, it is easy to draw from the

posterior directly especially if conjugate prior has assumed
e |f the model is more complicated, we have to simulate by parts

® Basic samplings are introduced in Appendix A
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Simulating from predictive distributions

® Once we have a sample from the posterior p(f|y), it is
typically easy to draw from the predictive distribution

® For each draw of 0, just draw one y from the predictive p(y|0)

® Set of y's characterizes the posterior predictive distribution

18



Rejection sampling

® Rejection sampling can be used when we want to draw a single
random value from p(f|y) or q(0|y)

® First, we have to define g(0) for all 6 for which p(f]y) > 0
with following properties

® g(9) has a finite integral
o % < M for all 8, known constant M
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Rejection sampling - Algorithm

@ Sample 0 at random from the probability density proportional

to g(0)

® With probability ,‘\’/gg@‘(}é%, accept 0 as a draw from p.

If the drawn 6 is rejected, return to step 1

;

7

Figure 1: Rejection sampling
Top curve: Mg(0), bottom curve: p(d|y)
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Rejection sampling

¢ |deal situation is that g(f) o p(f|y) and have suitable M,
which makes rejection not be occured

o If g(0) is nearly proportional to p(f|y), the bound M must be
set so large that almost all draws will be rejected

e Self-monitoring: if the method is not working efficiently, few
simulated draws will be accepted

® Usage) some fast methods for sampling from standard
univariate distributions, generic truncated multivariate
distributions
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Importance sampling

® |Importance sampling is a method related to rejection sampling
and a precursor to the Metropolis algorithm (Ch 11)

® Let g(#) be a approximated distribution to the target that we

can generate random draw from
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Importance sampling

® Suppose we are interested in E(h(0)|y), express it as

_ [ h(0)q(bly)do _ [Th(0)a(fly)/g(6)]g(0)db
[ a(0ly)do JTa( 9\y /g(0)lg(0)do

e This can be estimated using S draws 0*,...,0° from g(6) as

1300, h(0%)w(0®)
%Zf:l w(6°)

where w(6°) = q;?;Ly)) (importance ratios / importance

E(h(0)ly) =

weights)
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Importance sampling

¢ If g(0) can be chosen s.t. % is roughly constant, then fairly

precise estimates can be obtained

e |f the importance ratios vary substantially, then the sampling is
not useful

® The worst scenario occurs when the importance ratios are
small with high probability, and are huge with low probability

® |t happens when hq has wide tails compared to g as a function
of 0
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Accuracy and efficiency of importance sampling estimates

® | arge importance ratios have more influence to the

approximation than the small ones

e |f the variance of the weights are finite, the effective sample

size can be estimated as follows

S 1
eff = 55 =~ s
o (W(6))?
where w(6°) = —MO)S__ 4re normalized weights

o w(6%)
® Few huge weights -> small S, occasional huge weights ->
estimate is not good
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Importance resampling (SIR)

® |Importance resampling is used to obtain independent samples
with equal weights

® Once 61, ...,6° draws from the approximate distribution g have
been sampled, a sample of k draws can be simulated as follows

@ Sample a value 6 from the set 01, ..., 0°, where the probability
of sampling each 6° is proportional to the weight w(6°)

® Sample a next k values as same, but excluding the already
sampled ones

27



Importance resampling

® Reason for exclusion
® |f weights are moderate, then inclusion/exclusion doesn't
matter
® |f few weights are huge, then few values can be sampled
repeatedly if exclusion has not implemented

28



Uses of importance sampling in Bayesian computation

@ It can be used to improve analytic posterior approximation (Ch
13)
® |f importance sampling doesn't yield an accurate
approximation, then SIR can be helpful to obtain starting
points for an iterative simulation of posterior distribution

@® It is useful when considering mild changes in the posterior

distribution
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How many simulation draws are needed?

® Bayesian inferences are usually most conveniently summarized
by random draws from the posterior distributions

@ Percentiles of the posterior distribution of univariate estimand
® Reporting the 2.5%, 25%, 50%, 75%, 97.5% points of the
sampled distribution provides a 50%, 95% posterior interval
® Make inferences about predictive quantities
® Given each 6%, we can sample predictive y° ~ p(7]6%)
© Given each simulation #°, we can simulate a replicated dataset
y"™P* to check the model by comparing the data to these
posterior predictive replications
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How many simulation draws are needed?

® Qur goal in Bayesian computation is obtaining a set of
independent draws 6° from the posterior distribution, with
enough draws S

® |n general,

® posterior median, probability near 0.5, low-dimensional
summaries need less simulations

® posterior means, probability of rare events, high-dimensional
summaries need more simulations
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The bugs family of programs

® Bayesian inference using Gibbs sampling -> bugs

¢ A combination of Gibbs sampling, Metropolis algorithm, and
slice sampling can provide inference for variety of models when

run for a sufficiently long time

34



Other environments

® Stan : uses Hamiltonian Monte Carlo mehtod (Ch 12.4)

® mcsim : C program that implements Gibbs and Metropolis for
differential equation systems

e PyMC : a suite of routines in Python

HBC : for discrete-parameter models
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Debugging using fake data

® Use when a model is particularly complicated, or its inferences
are unexpected enough to be not necessarily believable

@ Pick a reasonable value for the true parameter vector 6, which
shouold be a random draw from the prior distribution

@® If the model is hierarchical, then perform Stepl for
hyperparameters, then draw the others from the prior
distribution conditional on the specified hyperparameters

© Simulate a large fake dataset y™@¢ from the data distribution
p(yl0)

@ Perform posterior inference about 6 from p(6]yke)

@ Compare the posterior inferences to the true 6
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Debugging using fake data

® To check that inferences are correct on average, a residual plot
is helpful

® For each scalar 6, define predicted value as the average of the
posterior simulations of §;, and the error as the true ; minus
the predicted value

e |f correct, the errors would approximately have zero mean

® |f a model has only few parameters, one can get the same
effect by performing many fake-data simulations
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Model checking and convergence checking as debugging

® |n practice, when a model grossly misfits the data, it is often
because of a computing error
e Similarly, poor convergence of anm iterative simulation
algorithm can sometimes occur from programming errors
o A useful strategy is simplifying
® remove parameters / fix parameter values

® use highly informative prior
® unlink hierarchy
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